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Figure 1: Upwind-biased stencils for faces far away from the boundaries of two-dimensional (a) triangular, (b) rectangular and
(c) hexagon meshes. The stencil is used to fit a multidimensional polynomial to cell centre values, φc , marked by grey circles,
in order to approximate the value φF at the face centroid marked by an open circle. φu and φd are the values at the centroids
of the upwind and downwind cells neighbouring the target face, drawn with a heavy line. The wind vector u f is prescribed at
face f and determines the choice of stencil at each timestep.

2 Multidimensional advection scheme

The advection of a dependent variable φ in a prescribed, non-divergent wind field u is given by the equation

∂ φ

∂ t
+∇ · (uφ) = 0 (1)

The time derivative is discretised using a three-stage, second-order Runge-Kutta scheme:

φ� = φ(n) +Δt f (φ(n)) (2a)

φ�� = φ(n) +
Δt
2

�
f (φ(n)) + f (φ�)

�
(2b)

φ(n+1) = φ(n) +
Δt
2

�
f (φ(n)) + f (φ��)

�
(2c)

where f (φ(n)) = −∇ · (uφ(n)) at time level n.
Using the finite volume method, the wind field is prescribed at face centroids and the dependent variable is

stored at cell centroids. The divergence term in equation (1) is discretised using Gauss’s theorem:

∇ · (uφ)≈ 1
�c

�
f ∈ c

u f · S fφF (3)

where �c is the cell volume, u f is a wind vector prescribed at a face, S f is the surface area vector with a direction
outward normal to the face and a magnitude equal to the face area, and

�
f ∈ c denotes a summation over all faces

f bordering cell c. The value of the dependent variable at the face, φF , is approximated by a least squares fit over
a stencil of surrounding cell centre values. The approximation method to calculate φF is described here.

To introduce the approximation method, we will consider how an approximate value is calculated for a face
that is far away from the boundaries of a two-dimensional uniform rectangular mesh. For any mesh, every interior
face connects two adjacent cells. The wind direction at the face determines which of the two adjacent cells is the
upwind cell. Since the stencil is upwind-biased, two stencils must be constructed for every interior face, and the
appropriate stencil is chosen for each face depending on the wind direction at that face for every timestep.

The upwind-biased stencil for a face f is shown in figure 1b. The wind at the face, u f , is blowing from the
upwind cell cu to the downwind cell cd . To obtain an approximate value at f , a polynomial least squares fit is
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calculated using the stencil values. The stencil has 4 points in x and 3 points in y , leading to a natural choice of
polynomial that is cubic in x and quadratic in y:

φ = a1 + a2 x + a3 y + a4 x2 + a5 x y + a6 y2 + a7 x3 + a8 x2 y + a9 x y2 (4)

A least squares approach is needed because the system of equations is overconstrained, with 12 stencil values but
only 9 polynomial terms. If the stencil geometry is expressed in a local coordinate system with the face centroid as
the origin, then the approximated value φF is equal to the constant coefficient a1.

The remainder of this section generalises the approximation technique for arbitrary meshes and describes
the methods for constructing stencils, performing a least squares fit with a suitable polynomial, and ensuring
numerical stability of the advection scheme.

2.1 Stencil construction

For every interior face, two stencils are constructed, one for each of the possible upwind cells. For a given face f
and upwind cell cu, we find those faces that are connected to cu and ‘oppose’ face f . These are called the opposing
faces. The opposing faces for face f and upwind cell cu are determined as follows. Defining G to be the set of faces
other than f that border cell cu, we calculate the ‘opposedness’, Opp, between faces f and g ∈ G, defined as

Opp( f , g)≡ −S f · Sg

|S f |2
(5)

where S f and Sg are the surface area vectors pointing outward from cell cu for faces f and g respectively. Using
the fact that a · b= |a| |b| cos(θ ) we can rewrite equation (5) as

Opp( f , g) = − |Sg |
|S f |

cos(θ ) (6)

where θ is the angle between faces f and g. In this form, it can be seen that Opp is a measure of the relative area
of g and how closely it parallels face f .

The set of opposing faces, OF, is a subset of G, comprising those faces with Opp≥ 0.5, and the face with the
maximum opposedness. Expressed in set notation, this is

OF( f , cu)≡ {g : Opp( f , g)≥ 0.5}∪ {g : max
g ∈ G
(Opp( f , g))} (7)

On a rectangular mesh, there is always one opposing face that is exactly parallel to the face f .
Once the opposing faces have been determined, the set of internal and external cells must be found. The

internal cells are those cells that are connected to the opposing faces. Note that cu is always an internal cell. The
external cells are those cells that share vertices with the internal cells. Note that cd is always an external cell.
Having found these two sets of cells, the stencil is constructed to comprise all internal and external cells.

Figure 2 illustrates a stencil construction for face f connecting upwind cell cu and downwind cell cd . The two
opposing faces are denoted by thick dashed lines and the centres of the three adjoining internal cells are marked by
black circles. The stencil is extended outwards by including the external cells that share vertices with the internal
cells, where the vertices are marked by black squares. The resultant stencil contains 13 cells.

2.2 Least squares fit

To approximate the value at a face f , a least squares fit is calculated from a stencil of surrounding cell centre values.
First, we will show how a polynomial least squares fit is calculated for a face on a rectangular mesh. Second, we
will make modifications to the least squares fit that are necessary for numerical stability. Finally, we will describe
how the approach is applicable to faces of arbitrary meshes.
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Figure 2: A thirteen-cell, upwind-biased stencil for face f connecting the pentagonal upwind cell, cu, and the downwind cell cd .
The dashed lines denote the two faces of cell cu that oppose f , and black circles mark the centroids of the internal cells that are
connected to these two opposing faces. The stencil is extended outwards by including cells that share vertices with the three
internal cells, where black squares mark these vertices. The local coordinate system (x , y) has its origin at the centroid of face
f , marked by an open circle, with x normal to f and y perpendicular to x .

For faces that are far away from the boundaries of a rectangular mesh, we fit the multidimensional polynomial
given by equation (4) that has nine unknown coefficients, a= a1 . . . a9, using the twelve cell centre values from
the upwind-biased stencil, φ= φ1 . . .φ12. This yields a matrix equation




1 x1 y1 x2
1 x1 y1 y2

1 x3
1 x2

1 y1 x1 y2
1

1 x2 y2 x2
2 x2 y2 y2

2 x3
2 x2

2 y2 x2 y2
2

...
...

...
...

...
...

...
...

...
1 x12 y12 x2

12 x12 y12 y2
12 x3

12 x2
12 y12 x12 y2

12







a1
a2
...

a9


 =




φ1
φ2
...
φ12


 (8)

which can be written as

Ba= φ (9)

The rectangular matrix B has one row for each cell in the stencil and one column for each term in the polynomial.
B is called the stencil matrix, and it is constructed using only the mesh geometry. A local coordinate system is
established in which x is normal to the face f and y is perpendicular to x . The coordinates (xi , yi) give the position
of the centroid of the ith cell in the stencil. The unknown coefficients a are calculated using the pseudo-inverse of
B+ found by singular value decomposition:

a= B+φ (10)

Recall that the approximate value φF is equal to the constant coefficient a1, which is a weighted mean of φ:

a1 =




b+1,1
b+1,2

...
b+1,12


 ·




φ1
φ2
...
φ12


 (11)

where the weights b+1,1 . . . b+1,12 are the elements of the first row of B+.
In the least squares fit presented above, all stencil values contributed equally to the polynomial fit. Lashley

(2002) showed that it is necessary for numerical stability that the polynomial fits the cells connected to face f
more closely than other cells in the stencil. To achieve this, we allow each cell to make an unequal contribution to
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Figure 3: Upwind-biased stencils for faces near the left-hand boundary of a rectangular mesh, with (a) a 2× 3 stencil for the
face immediately adjacent to the left-hand boundary, and (b) a 3× 3 stencil for the face immediately adjacent to the face
in (a). For both stencils, attempting a least squares fit using the nine-term polynomial in equation (4) would result in an
underconstrained problem.

the least squares fit. We assign an integer multiplier to each cell in the stencil, m = m1 . . . m12, and multiply by
equation (9) to obtain

B̃a=m ·φ (12)

where B̃=MB and M= diag(m). The constant coefficient a1 is calculated from the pseudo-inverse, B̃+:

a1 = b̃+1 ·m ·φ (13)

where b̃+1 = b̃+1,1 . . . b̃+1,12 are the elements of the first row of B̃+. Again, a1 is a weighted mean of φ, where the

weights are now b̃+1 ·m. Note that, once b̃+1 is calculated for each stencil, only the first row needs to be stored.
For faces of a non-rectangular mesh, or faces that are near a boundary, the number of stencil cells and number of

polynomial terms may differ: a stencil will have two or more cells and, for two-dimensional meshes, its polynomial
will have between one and nine terms. Additionally, the polynomial cannot have more terms than its stencil has
cells because this would lead to an underconstrained system of equations. The procedure for choosing suitable
polynomials is discussed next.

2.3 Polynomial generation

The majority of faces on a uniform two-dimensional mesh have stencils with more than nine cells. For example, a
triangular mesh has 19 points (figure 1a), a rectangular mesh has 12 points (figure 1b), and a hexagonal mesh has
10 points (figure 1c). In all three cases, constructing a system of equations using the nine-term polynomial in
equation (4) leads to an overconstrained problem that can be solved using least squares. However, this is not true
for faces near boundaries: stencils that have fewer than nine cells (figure 3a) would result in an underconstrained
problem, and stencils that have exactly nine cells may lack sufficient information to constrain high-order terms. For
example, the stencil in figure 3b lacks sufficient information to fit the x3 term. In such cases, it becomes necessary
to perform a least squares fit using a polynomial with fewer terms.

For every stencil, we find a set of candidate polynomials that do not result in an underconstrained problem. In
two dimensions, a candidate polynomial has between one and nine terms and includes a combination of the terms
in equation (4). There are two additional constraints that a candidate polynomial satisfy.

First, high-order terms may be included in a candidate polynomial only if the lower-order terms are also
included. Let

M(x , y) = x i y j : i, j ≥ 0 and i + j ≤ 3 (14)

be the set of all monomials of degree at most 3 in x , y. A subset S of M(x , y) is “dense” if, whenever xa y b and
xc yd are in S with a ≤ c and b ≤ d, then x i y j is also in S for all a < i < c, b < j < d. For example, the polynomial
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φ = a1 + a2 x + a3 y + a4 x y + a5 x2 + a6 x2 y is a dense subset of M(x , y), but φ = a1 + a2 x + a3 y + a4 x2 y is not
because x2 y can be included only if x y and x2 are also included.

Second, a candidate polynomial must have a stencil matrix B that is full rank. The matrix is considered full
rank if its smallest singular value is greater than 1× 10−9. Using a polynomial with all nine terms and the stencil in
figure 3b results in a rank-deficient matrix and so the nine-term polynomial would not be a candidate polynomial.

The candidate polynomials are all the dense subsets of M(x , y) that have a stencil matrix that is full rank.
The final stage of the advection scheme selects a candidate polynomial and ensures that the least squares fit is
numerically stable.

2.4 Stabilisation procedure

So far, we have constructed a stencil and found a set of candidate polynomials. Applying a least squares fit to any
of these candidate polynomials avoids creating an underconstrained problem. The final stage of the advection
scheme chooses a suitable candidate polynomial and appropriate multipliers so that the fit is numerically stable.

The approximated value φF is equal to a1 which is calculated from equation (13). The value of a1 is a weighted
mean of φ where w= b̃+1 ·m are the weights. If the cell centre values φ are assumed to approximate a smooth
field then we expect φF to be close to the values of φu and φd , and expect φF to be insensitive to small changes in
φ. When the weights w have large magnitude then this is no longer true: φF becomes sensitive to small changes
in φ which can result in large departures from the smooth field φ.

A one-dimensional von Neumann analysis was performed to obtain stability constraints on the weights w. The
analysis is presented in the appendix, and it shows that the weights must satisfy three constraints:

0.5≤ wu ≤ 1 (15a)

0≤ wd ≤ 0.5 (15b)

wu − wd ≥max
p ∈ P
(|wp|) (15c)

where wu and wd are the weights for the upwind and downwind cells respectively. The peripheral cells P are the
cells in the stencil that are not the upwind or downwind cells, and wp is the weight for a given peripheral cell p.

The stabilisation procedure comprises three steps. In the first step, the candidate polynomials are sorted in
preference order so that candidates with the most terms are preferred over those with fewer terms. If there are
multiple candidates with the same number of terms, the candidate with the largest minimum singular value
is preferred. This ordering ensures that the preferred candidate is the highest-order polynomial with the most
information content.

In the second step, the most-preferred polynomial is taken from the list of candidates and the multipliers are
assigned so that the upwind cell and downwind cell have multipliers mu = 210 and md = 210 respectively, and
all peripheral cells have multipliers mp = 1. These multipliers are very similar to those used by Lashley (2002),
leading to a well-conditioned matrix B̃ and a least squares fit in which the polynomial passes almost exactly
through the upwind and downwind cell centre values.

In the third step, we calculate the weights w from the least squares fit and evaluate them against the stability
constraints given in equation (15). If any constraint is violated, the value of md is halved and the constraints
are evaluated with the new weights. This step is repeated until the weights satisfy the stability constraints, or
md becomes smaller than one. In practice, the constraints are satisified when md is either small (between 1 and
4) or equal to 210. If the constraints are still not satisfied, then we start again from the second step with the
next-preferred polynomial in the candidate list.

Finally, if no stable weights are found for any candidate polynomial, we revert to an upwind scheme such that
wu = 1 and all other weights are zero. In fact, we have not encountered any stencil for which this last resort is
required.

To illustrate the stabilisation procedure, figure 4a presents a one-dimensional example of a cubic polynomial
fitted through five points, with the weight at each point printed above it. In preference order, the candidate
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Figure 4: A one-dimensional least squares fits to a stencil of five points using (a) a cubic polynomial with multipliers mu = 1024,
md = 1024 and mp = 1, (b) a quadratic polynomial with the same multipliers, and (c) a quadratical polynomial with multipliers
mu = 1024, md = 1 and mp = 1. Notice that the curves in (a) and (b) fit almost exactly through the upwind and downwind
points immediately adjacent to the y-axis, but in (c) the curve fits almost exactly only through the upwind point immediately
to the left of the y-axis. The point data are labelled with their respective weights. Points that have failed one of the stability
constraints in equation (15) are marked in red. The upwind point is located at (−1, 1.8) and the downwind point at (0.62, 1.9),
and the peripheral points are at (−2.8,2.4), (−1.6, 2.7) and (−1.2,2.2).

polynomials are

φ = a1 + a2 x + a3 x2 + a4 x3 (16)

φ = a1 + a2 x + a3 x2 (17)

φ = a1 + a2 x (18)

φ = a1 (19)

We begin with the cubic equation. The multipliers are chosen so that the polynomial passes almost exactly through
the upwind and downwind points that are immediately to the left and right of the y-axis respectively. The constraint
on the upwind point is violated because wu = 1.822> 1 (equation 15a). Reducing the downwind multiplier does
not help to satisfy the constraint, so we start again with the quadratic equation (figure 4b). Again, the multipliers
are chosen to force the polynomial through the upwind and downwind points, but this violates the constraint on
the downwind point because wd = 0.502 > 0.5 (equation 15b). This time, however, stable weights are found
by reducing wd to one (figure 4c) and these are the weights that will be used to approximate φF , where the
polynomial intercepts the y-axis.
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Appendix: One-dimensional von Neumann stability analysis

Two analyses are performed in order to find stability constraints on the weights w = b̃+1 ·m as appear in equation (13).
The first analysis uses two points to derive separate constraints on the upwind weight wu and downwind weight
wd . The second analysis uses three points to derive a constraint that considers all weights in a stencil.

Two-point analysis

We start with the conservation equation for a dependent variable φ that is discrete-in-space and continuous-in-time

∂ φ j

∂ t
= −u

φR −φL

Δx
(20)

where the left and right fluxes, φL and φR are weighted averages of the neighbouring points. Assuming that u is
positive

φL = αuφ j−1 +αdφ j (21)

φR = βuφ j + βdφ j+1 (22)

where αu and βu are the upwind weights and αd and βd are the downwind weights for the left and right fluxes
respectively, and αu+αd = 1 and βu+βd = 1. A subscript j denotes the value at a given point x = jΔx where Δx
is a uniform mesh spacing.

At a given time t = nΔt at time-level n and with a time-step Δt, we assume a wave-like solution with an
amplification factor A, such that

φ
(n)
j = Anei jkΔx (23)

where φ(n)j denotes a value of φ at position j and time-level n. Using this to rewrite the left-hand side of
equation (50)

∂ φ j

∂ t
=
∂

∂ t

�
At/Δt
�

ei jkΔx =
ln A
Δt

Aneik jΔx (24)

hence equation (50) becomes
ln A
Δt
= − u
Δx

�
βu + βd eikΔx −αue−ikΔx −αd

�
(25)

lnA= −c (βu −αd + βd cos kΔx + iβd sin kΔx −αu cos kΔx + iαu sin kΔx) (26)

where the Courant number c = uΔt/Δx . Let ℜ = βu − αd + βd cos kΔx − αu cos kΔx and ℑ = βd sin kΔx +
αu sin kΔx , then

ln A= −c (ℜ+ iℑ) (27)

A= e−cℜe−i cℑ (28)

and the complex modulus and complex argument of A are found to be

|A|= e−cℜ = exp (−c (βu −αd + (βd −αu) cos kΔx)) and (29)

arg(A) = −cℑ= −c (βd +αu) sin kΔx (30)

For stability, we need |A|≤ 1 and for advection in the correct direction we need arg(A)< 0 for c > 0, so

βu −αd + (βd −αu) cos kΔx ≥ 0 ∀kΔx and (31)

βd +αu > 0 (32)

Imposing the additional constraints that αu = βu and αd = βd :

|A|= exp (−c (αu −αd) (1− cos kΔx)) (33)
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and given 1− cos kΔx ≥ 0, then

αu −αd ≥ 0 (34)

which provides a lower bound on αu:

αu ≥ αd (35)

Additionally, we do not want more damping than an upwind scheme (where αu = βu = 1, αd = βd = 0), having an
amplification factor, Aup:

|Aup|= exp (−c (1− cos kΔx)) (36)

So we need |A|≥ |Aup|:
−c (αu −αd) (1− cos kΔx)≥ −c (1− cos kΔx) (37)

αu −αd ≤ 1 (38)

αu ≤ 1+αd (39)

which provides an upper bound on αu. Combining with eqn (65) we can bound αu on both sides:

αd ≤ αu ≤ 1+αd (40)

Now, knowing that αu +αd = 1 (or αd = 1−αu), then

1−αu < αu ≤ 1+ (1−αu) (41)

0.5≤ αu ≤ 1 (42)

and, since αu +αd = 1, then

0≤ αd ≤ 0.5 (43)

Three-point analysis

We start again from equation (50) but this time approximate φL and φR using three points:

φL = αuuφ j−2 +αuφ j−1 +αdφ j (44)

φR = αuuφ j−1 +αuφ j +αdφ j+1 (45)

having used the same weights αuu, αu and αd for both left and right fluxes. Substituting equation (53) into
equation (50) we find

A= exp
�−c
�
αuu

�
e−ikΔx − e−2ikΔx

�
+αu

�
1− e−ikΔx
�
+αd

�
eikΔx − 1
���

(46)

So that, if the complex modulus |A|≤ 1 then

αu −αd + (αuu −αu +αd) cos kΔx −αuu cos2kΔx ≥ 0 (47)

If cos kΔx = −1 and cos 2kΔx = 1 then αu−αd ≥ αuu, and if cos kΔx = 0 and cos 2kΔx = −1 then αu−αd ≥ −αuu.
Hence we find that

αu −αd ≥ |αuu| (48)

and, when the same analysis is performed with four points, αuuu, αuu, αu and αd , we find that the same condition
holds replacing αuu with αuuu. Hence, we generalise equation (78) to find the final stability constraint

αu −αd ≥max
p ∈ P
|αp| (49)

where the peripheral cells P is the set of all stencil cells except for the upwind and downwind cell, and αp is the
weight for a given peripheral cell p.
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